56 research outputs found

    Simple, near-optimal quantum protocols for die-rolling

    Get PDF
    Die-rolling is the cryptographic task where two mistrustful, remote parties wish to generate a random DD-sided die-roll over a communication channel. Optimal quantum protocols for this task have been given by Aharon and Silman (New Journal of Physics, 2010) but are based on optimal weak coin-flipping protocols which are currently very complicated and not very well understood. In this paper, we first present very simple classical protocols for die-rolling which have decent (and sometimes optimal) security which is in stark contrast to coin-flipping, bit-commitment, oblivious transfer, and many other two-party cryptographic primitives. We also present quantum protocols based on integer-commitment, a generalization of bit-commitment, where one wishes to commit to an integer. We analyze these protocols using semidefinite programming and finally give protocols which are very close to Kitaev's lower bound for any D3D \geq 3. Lastly, we briefly discuss an application of this work to the quantum state discrimination problem.Comment: v2. Updated titl

    Device-independent dimension test in a multiparty Bell experiment

    Full text link
    A device-independent dimension test for a Bell experiment aims to estimate the underlying Hilbert space dimension that is required to produce given measurement statistical data without any other assumptions concerning the quantum apparatus. Previous work mostly deals with the two-party version of this problem. In this paper, we propose a very general and robust approach to test the dimension of any subsystem in a multiparty Bell experiment. Our dimension test stems from the study of a new multiparty scenario which we call prepare-and-distribute. This is like the prepare-and-measure scenario, but the quantum state is sent to multiple, non-communicating parties. Through specific examples, we show that our test results can be tight. Furthermore, we compare the performance of our test to results based on known bipartite tests, and witness remarkable advantage, which indicates that our test is of a true multiparty nature. We conclude by pointing out that with some partial information about the quantum states involved in the experiment, it is possible to learn other interesting properties beyond dimension.Comment: 10 pages, 2 figure

    How to make unforgeable money in generalised probabilistic theories

    Get PDF
    We discuss the possibility of creating money that is physically impossible to counterfeit. Of course, "physically impossible" is dependent on the theory that is a faithful description of nature. Currently there are several proposals for quantum money which have their security based on the validity of quantum mechanics. In this work, we examine Wiesner's money scheme in the framework of generalised probabilistic theories. This framework is broad enough to allow for essentially any potential theory of nature, provided that it admits an operational description. We prove that under a quantifiable version of the no-cloning theorem, one can create physical money which has an exponentially small chance of being counterfeited. Our proof relies on cone programming, a natural generalisation of semidefinite programming. Moreover, we discuss some of the difficulties that arise when considering non-quantum theories.Comment: 27 pages, many diagrams. Comments welcom

    Strong connections between quantum encodings, non-locality and quantum cryptography

    Get PDF
    Encoding information in quantum systems can offer surprising advantages but at the same time there are limitations that arise from the fact that measuring an observable may disturb the state of the quantum system. In our work, we provide an in-depth analysis of a simple question: What happens when we perform two measurements sequentially on the same quantum system? This question touches upon some fundamental properties of quantum mechanics, namely the uncertainty principle and the complementarity of quantum measurements. Our results have interesting consequences, for example they can provide a simple proof of the optimal quantum strategy in the famous Clauser-Horne-Shimony-Holt game. Moreover, we show that the way information is encoded in quantum systems can provide a different perspective in understanding other fundamental aspects of quantum information, like non-locality and quantum cryptography. We prove some strong equivalences between these notions and provide a number of applications in all areas.Comment: Version 3. Previous title: "Oblivious transfer, the CHSH game, and quantum encodings
    corecore